

GAUTENG PROVINCE MATHEMATICS – ANNUAL TEACHING PLAN –GRADE II 2017

DATE	TOPIC	CONTENT	F	ASSESSMENT	DATE Completed	% Comple ted
TERM 1			2 T	ASKS FOR TERM 1		
11/1 – 13/1 (3 days)	Exponents and Surds	• Simplify expressions using the laws of exponents for rational exponents where $x^{\frac{p}{q}} = \sqrt[q]{x^p} : x > 0 : q > 0$				3%
16/1 – 20/1	Exponents and Surds	 Solve equations using the laws of exponents for rational exponents where \$\frac{p}{q} = \frac{q}{\sqrt{x^p}} : x > 0; q > 0\$. Add, subtract, multiply, divide simple surds. 				6%
23/1 – 27/1	Exponents and Surds	Add, subtract, multiply, divide simple surds.Solve simple equations involving surds.				9%
30/1 – 03/2	Equations	Revision of factorization.Quadratic equations (by factorisation).Complete the square.				12%
06/2 – 10/2	Equations and Inequalities	 Quadratic equations (by using the quadratic formula). k - method Quadratic inequalities in one unknown (Interpret solutions graphically). 	F	PROJECT/ INVESTIGATION SBA marks: 20		15%
13/2 – 17/2	Simultaneous equations Nature of roots	 Equations in two unknowns, one of which is linear and the other quadratic. Nature of roots. 				18%
20/2 - 24/2	Number patterns	Revise linear number patterns. Investigate number patterns leading to those where there is a constant second difference between consecutive terms, and the general term is therefore quadratic.				21%
27/2 – 03/3	Number patterns	Investigate number patterns leading to those where there is a constant second difference between consecutive terms, and the general term is therefore quadratic.	F	TEST SBA marks: 10		24%
06/3 – 10/3	Analytical Geometry	 The equation of a line through two points. The equation of a line through one point and parallel or perpendicular to a given line. Collinear lines 				27%
13/3 – 17/3	Analytical Geometry	 The inclination(θ) of a given line. Applications. 				30%
20/3 – 24/3 (3 days)	Euclidian Geometry	 Revision of grade 10 geometry (1 day) Investigate and prove theorems of the geometry of circles assuming results from earlier grades, The line drawn from the centre of a circle perpendicular to a chord bisects the chord; The perpendicular bisector of a chord passes through the centre of the circle; The angle at the centre of a circle is double the size of the angle at the circle. 				33%
27/3 – 31/3	Euclidian Geometry	 Angles subtended by a chord of the circle, on the same side of the chord, are equal. Solve circle geometry problems, providing reasons for statements. 				36%
TERM 2			2 T	ASKS FOR TERM 2		
18/4 – 21/4 (4 days)	Functions	 Revise the effect of a and q and investigate the effect of p on the graphs of the functions defined by: y =f(x) =a (x + p) + q 				39%
		• $y = f(x) = a(x + p)^2 + q$				

Grade 11 :ATP 2017 Page 2 of 3

24/4 – 28/4 (3 days)	Functions	 Revise the effect of a and q and investigate the effect of p on the graphs of the functions defined by: y = f(x) = a (x + p)² + q y = f(x) = a/(x + p)² + q NB: Apply nature of roots with functions 		MATHS WEEK	42%
01/5 – 05/5 (4 days)	Functions	 y = f(x) = a/(x + p) + q y = f(x) = ab^{x+p} + q; b>0; b≠ 1 NB: Apply nature of roots with functions 			45%
08/5 – 12/5	Functions	 Average gradient and gradient of a curve at a point. Interpretations, applications and Practical problems. NB: Apply nature of roots with functions 	F	ASSIGNMENT/ TEST SBA marks: 10	48%
15/5 – 19/5	Trig functions and revision grade 10 trigonometry	 Basic graphs defined by y = a sin x, y = a cos x and y = tan x for θ ∈ [-360⁰;360⁰] Investigate the effect of k and p on the graphs of the functions defined by: y = sin (kx), y = cos (kx) and y = tan (kx) y = sin(x + p), y = cos(x + p), y = tan(x + p)) 			51%
22/5 – 26/5	Identities Reduction formula	• Derivation and use of the identities $\tan\theta = \frac{\sin\theta}{\cos\theta} \text{ and } \sin^2\theta + \cos^2\theta = 1$ • Determine for which values of a variable an identity holds. • Derivation and use of reduction formulae for $\sin(90^0 \pm \theta), \cos(90^0 \pm \theta), \sin(180^0 \pm \theta), \cos(180^0 \pm \theta), \tan(180^0 \pm \theta), \sin(360^0 \pm \theta), \cos(360^0 \pm \theta), \tan(360^0 \pm \theta)$ • $\sin(-\theta), \cos(-\theta), \tan(-\theta)$			54%
29/5 - 02/6	Trig equations and general solutions	 Determine the general solution and / or specific solutions (given intervals) of trigonometric equations. 			57%
05/6 - 09/6	JUNE EXAMS				
12/6 – 16/6 (4 days)	JUNE EXAMS		F	JUNE EXAM SBA marks: 30	
19/6 – 23/6	JUNE EXAMS				
26/6 - 30/6	Exam corrections	Remediation of June examination			

TERM 3			2 TASKS FOR TERM 3	
24/7 – 28/7	Measurements	Revision of grade 10 work.		60%
31/7 – 04/8	Euclidian Geometry	 The opposite angles of a cyclic quadrilateral are supplementary; Two tangents drawn to a circle from the same point outside the circle are equal in length; The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment. 		63%
07/8 - 11/8 (4 days)	Euclidian Geometry	Solve circle geometry problems, providing reasons for statements.	F TEST SBA marks: 10	66%

Grade 11 :ATP 2017 Page 3 of 3

14/8 – 18/8	Euclidian Geometry	Solve circle geometry problems, providing reasons for statements.			69%
21/8 – 25/8	Trigonometry Sin/Cos/Area rules	Prove and apply the sine, cosine and area rules.			72%
28/8 - 01/9	Trigonometry Sin/Cos/Area rules	Solve problems in two dimensions using the sine, cosine and area rules.			75%
04/9 – 08/9	Financial Maths	Simple and compound decay formulae.	F	TEST SBA marks: 10	78%
11/9 – 15/9	Financial Maths	Different periods of compound growth and decay. Effective and nominal interest rates.			81%
18/9 – 22/9	Probability	 Dependent and independent events. Two-way contingency tables. the product rule for independent events: P(A and B) = P(A).P(B). 			84%
25/9 – 29/9 (4 days)	Probability	Venn diagrams, tree diagrams and other techniques to solve probability problems (where events are not necessarily independent.			87%
TERM 4			1 TASK	FOR TERM 4	
09/10 -13/10	Statistics	Histograms. Frequency polygons.			90%
16/10 –20/10	Statistics	Variance and standard deviation of ungrouped data Ogives (cumulative frequency curves).			93%
23/10 –27/10	Statistics	Symmetric and skewed data. Identification of outliers.	F	TEST SBA marks: 10	96%
30/10 – 3/11	Geometry / Trigonometry	Application of geometry / trigonometry.			100%
06/11 -10/11	Revision	Exposure to exam type questions.			
13/11 –17/11	FINAL EXAMINATIONS			25 % SBA	
20/11 -24/11	FINAL EXAMINATIONS			75 %	
27/11 - 01/12	FINAL EXAMINATIONS			Final exam	

Mark distribution for Mathematics NCS end-of-year paper	s: Grades 10 - 12		
PAPER 1 : Grades 12: bookwork: maximum 6 marks			
Description	Grade 10	Grade 11	Grade. 12
Algebra and equations (and inequalities)	30 ± 3	45 ± 3	25 ± 3
Patterns and sequences	10 ± 3	25 ± 3	25 ± 3
Finance and growth	15 ± 3		
Finance, growth and decay	15 ± 3	15 ± 3	15 ± 3
Functions and graphs	30 ± 3	45 ± 3	35 ± 3
Differential Calculus			35 ± 3
Probability	15 ± 3	20 ± 3	15 ± 3
TOTAL	100	150	150
PAPER 2: Grades 11 and 12: theorems and/or trigonome	etric proofs: maximum 12 ma	rks	•
Description	Grade 10	Grade 11	Grade 12
Statistics	15 ± 3	20 ± 3	20 ± 3
Analytical Geometry	15 ± 3	30 ± 3	40 ± 3
Trigonometry	40 ± 3	50 ± 3	40 ± 3
Euclidean Geometry and Measurement	30 ± 3	50 ± 3	50 ± 3
TOTAL	100	150	150