GAUTENG PROVINCE
 MATHEMATICS - ANNUAL TEACHING PLAN - GRADE 12 2017

DATE	TOPIC	CONTENT	F	ASSESSMENT	DATE Completed	Complete
TERM 1				3 TASKS TERM 1		
$\begin{gathered} 11 / 1-13 / 1 \\ (3 \text { days) } \end{gathered}$	Number patterns	- Revision gr 11 quadratic number patterns(1 day) - Number patterns (Arithmetic sequences and series).				4 \%
16/1-20/1	Sequences \& Series	- Number patterns (Arithmetic sequences and series). - Number patterns (Geometric sequences and series).				8 \%
23/1-27/1	Sequences \& Series	- Sigma notation. - Sum of series. - Derivation and application of the formulae for the sum of arithmetic and geometric series: $\begin{aligned} & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\ & S_{n}=\frac{n}{2}[a+L] \\ & S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ;(r \neq 1) \text { and } \\ & S_{n}=\frac{a}{1-r} ;(-1<r<1),(r \neq 1) \\ & S_{\infty}=\frac{a}{1-r} \end{aligned}$				12 \%
30/1-03/2	Functions: Formal Definition Inverses Restrictions of domain	- Definition of a function. Focus on the following characteristics: - domain and range, - intercepts with the axes, - turning points, - minima, maxima, - asymptotes (horizontal and vertical) - shape and symmetry, - average gradient (average rate of change), - intervals on which the function increases /decreases. - General concept of the inverse of a function and restriction of the domain to ensure that the inverse is a function.	F	PROJECT/ INVESTIGATION SBA marks: 20		16 \%
06/2-10/2	Functions: Inverses	- Determine and sketch graphs of the inverses of the functions defined by $y=a x+q ; y=a x^{2} .$ - Graph of the function defined by $y=b^{x}, b>0$ and $b \neq 1$.				20 \%
13/2-17/2	Functions: Exponential and Logarithmic	- Definition of a logarithm: LAWS NOT EXAMINABLE $y=\log _{b} x \Leftrightarrow x=b^{y}, b>0 ; b \neq 1$ - The graph of the function define by $y=\log _{b} x$ for both the cases $0<b<1$ and $b>1$.				24 \%

20/2-24/2	Financial Maths	- Solve problems using present and future value annuities.	F	ASSIGNMENT SBA marks: 10	28 \%
27/2-03/3	Financial Maths	- Calculate the value of n in the formulae $A=P(1+i)^{n}$ or $A=P(1-i)^{n}$ - Critically analyse investments and loan option(s) [including pyramid].			32 \%
06/3-10/3	Trigonometry	- Compound angle identities: $\sin (\alpha \pm b)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$			36\%
13/3-17/3	Trigonometry	$\begin{aligned} & \text { Double angle identities: } \\ & \begin{aligned} \sin 2 \alpha & =2 \sin \alpha \cos \alpha \\ \cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha \\ & =2 \cos ^{2} \alpha-1 \\ & =1-2 \sin ^{2} \alpha \end{aligned} \end{aligned}$	F	TEST SBA marks: 10	40 \%
$\begin{gathered} 20 / 3-24 / 3 \\ (3 \text { days }) \end{gathered}$	Euclidian Geometry	- Conditions for polygons to be similar. - Revise grade 10 Midpoint theorems. Prove: - Proportionality - Equiangular triangles are similar.			44 \%
27/3-31/3	Euclidian Geometry	- Triangles with sides in proportion are similar. - Pythagorean Theorem by similar triangles.			48 \%
TERM 2				2 TASKS TERM 2	
$\begin{gathered} 18 / 4-21 / 4 \\ \text { (4 days) } \end{gathered}$	Euclidian Geometry	Use : - Proportionality and Midpoint Theorems. - Equiangular triangles are similar.			52 \%
$\begin{gathered} 24 / 4-28 / 4 \\ (3 \text { days }) \\ \hline \end{gathered}$	Trigonometry	- Solve problems in two and three dimensions.			56 \%
$\begin{gathered} 01 / 5-05 / 5 \\ (4 \text { days }) \end{gathered}$	Functions: Polynomials	- Factorise third-degree polynomials. Apply the Remainder and Factor Theorems to polynomials of degree at most 3 (no proofs required)(1 day). - Intuitive understanding of limit concept. - Approximate instantaneous rate of change or gradient of function at a point.			60 \%
08/5-12/5	Differential Calculus	- Limits to define the derivative of a function $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ - First principles. - Rules of differentiation.	F	TEST SBA marks: 10	64 \%
15/5-19/5	Differential Calculus	- Cubic graphs. - Equations of tangents to graphs of functions. - Second derivative and concavity.			68 \%
22/5-26/5	Differential Calculus	- Practical problems concerning. optimisation, rate of change and motion. - Revise Grade 11 Analytical Geometry			72 \%
29/5-02/6	Analytical Geometry	- The equation of a circle (any centre) $(x-a)^{2}+(y-b)^{2}=r^{2}$ - The equation of a tangent to a circle			76 \%
05/6-09/6	JUNE EXAMS	All topics from grade 11 and grade 10 will be examinable in June exam	F	JUNE EXAM SBA marks: 15	
$\begin{gathered} \hline 12 / 6-16 / 6 \\ (4 \text { days }) \\ \hline \end{gathered}$	JUNE EXAMS				
19/6-23/6	JUNE EXAMS				
26/6-30/6	Exam corrections	- Remediation of June examination			

Paper 1	Marks	Paper 2	Marks
Algebra, equations, inequalities	25 ± 3	Statistics	20 ± 3
Patterns and sequences	25 ± 3	Analytical Geometry	40 ± 3
Finance, growth, decay	15 ± 3	Trigonometry	40 ± 3
Functions and graphs	35 ± 3	Geometry and measurement	50 ± 3
Calculus	35 ± 3		
Probability	15 ± 3		150

